Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence On the Complexity of Overcoming Gaps When Using Elitist Selection and Isotropic Mutations

نویسنده

  • Jens Jägersküpper
چکیده

We consider the (1+λ) evolution strategy, an evolutionary algorithm for minimization in Rn, using isotropic mutations. Thus, for instance, Gaussian mutations adapted by the 1/5-rule or by σ-self-adaptation are covered. Lower bounds on the (expected) runtime (defined as the number of function evaluations) to overcome a gap in the search space are proved (where the search faces a gap of size ∆ if the distance between the current search point and the set of all better points is at least ∆), showing when the runtime is potentially polynomial and when the runtime is necessarily super-polynomial or even necessarily exponential in n, the dimensionality of the search space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Why Comma Selection Can Help with the Escape from Local Optima

We investigate (1,λ) ESs using isotropic mutations for optimization in R by means of a theoretical runtime analysis. In particular, a constant offspring-population size λ will be of interest. We start off by considering an adaptation-less (1,2) ES minimizing a linear function. Subsequently, a piecewise linear function with a jump/cliff is considered, where a (1+λ) ES gets trapped, i. e., (at le...

متن کامل

Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence TAKEOVER TIME IN PARALLEL POPULATIONS WITH MIGRATION

The term takeover time regarding selection methods used in evolutionary algorithms denotes the (expected) number of iterations of the selection method until the entire population consists of copies of the best individual, provided that the initial population consists of a single copy of the best individual whereas the remaining individuals are worse. Here, this notion is extended to parallel su...

متن کامل

Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Pareto Set and EMOA Bahavior for Simple Multimodal Multiobjective Functions

Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a simple, configurable problem,...

متن کامل

Design und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions

Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a simple, configurable problem,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005